
Skynet design document v0.1.093012

Overview
This system is designed to automate the process of scanning specified subnets on a
scheduled basis. Data from each scan is stored for historical purposes allowing the
administrator to identify change over time. Automated reporting can be used to
provide regular updates on security status as well as alert the administrator when
anomalies are detected. Scans are compared against a previous “baseline” scan,
defined for each scanning host.

This is a “living” document and is not feature complete. Check back often for
updated versions.

General Features / Components
Cloud component

NMAP

Local timing and parameters data

Local control daemon

Control system

Control nmap options ?

Identify IP blocks (CIDR notation)

Control scan time

Can we feed back into this?

Push parameters to cloud

Should be able to define multiple destinations

Retrieve finished data from the cloud



Create ndiff files?

Visualization system

MySQL database of ndiff data?

Might be overkill

Text-based ndiff data?

Easy to keep this encrypted

Combination of both?

MySQL for metadata

Text for full scan data

PHP graphing of changes

Time per scan

Number of hosts per scan

Number of ports per scan

Change in hosts/ports per scan

Reporting subsystem

Automated reporting

Reports triggered by control daemon

Multiple report types

Pre-defined

Custom



Configurable email address

non-emailed reports?

On the fly reports

GUI only reports

Component Detail
Cloud Component
The “cloud” piece of this software is the dumb workhorse piece of the system. Setup
should be minimal and easily deployed on disparate systems.

Instructions are delivered via flat text files placed into a configuration directory. The
local system parses these files and builds a localized timing table for spawning
processes. This localized data is stored in a flat text file with a predefined format.
Something similar to a cron table seems appropriate. The parsing system should
create a hash table of existing configuration files to identify what is new and what can
be removed from the timing table. (Should this data be encrypted? What advantage
does this give an attacker?)

A spawning daemon is responsible for reading the timing table and spawning new
processes at the appropriate time. New scans are spawned as separate processes
with their PID being noted by the spawning daemon. The spawning daemon should
identify if the previous scan process has completed prior to starting a new process.
In the event of an existing process, the daemon should identify if the process is still
running (PID file and PID exists) or if it died in process (PID file only). It should send
an appropriate notification to the administrator identifying the problem for dead PIDs
and only send a notification for existing PIDs if an override flag is not set. In the case
of a dead PID, the new scan should be spawned as requested. If the PID still exists,
however, the spawning daemon should only spawn the process if there’s an override
flag set. This gives the administrator control to run scans on a tighter schedule when
the run-time of a single scan may exceed the period of time between scans.

Finished scans should encrypt the scan results using a public GPG key and the plain
text version of the file should be scrubbed. (Can we encrypt on the fly as the scan is
running?) All completed files are stored in a holding area until the central processing



system retrieves them. After retrieval, reports are scrubbed from the system.

Timing Table Format

minute hour day month override_flag ip_range nmap_options

Control System
The control system is the central brain of the scanning system. It is responsible for
interacting with the administrator, pushing schedule data to the scanning systems,
and retrieving scan data from the scanning systems.

The control system stores all schedule data in a MySQL database. New schedule
configurations are pushed out on a manual basis as the administrator chooses. Data
is pushed to the remote systems via a simple SCP process. Automated retrieval of
data occurs on a timed schedule. Retrieved data should be decrypted using a private
GPG key. Metadata from the scans is added to a MySQL database and the raw scan
data is stored in a predefined directory structure. Files should be named
appropriately to indicate date and time of scan so manual interaction with files is
simplified.

Visualization System
The visualation system is essentially the GUI front end for the system. It allows
administrators GUI access to the control system for scheduling scans and reports as
well as setting a new baseline. It also provides a visualization of the data being
reported from the scanning systems. The visualization system provides graphical
views of data such as actve hosts, active ports, filtered ports, and average scan
times. The graphical system will use the metadata stored in the MySQL database to
generate these graphs.

Possible graphs : * Number of hosts per scan * Number of ports per scan * Time per
scan * Changes per scan

Reporting Subsystem
Pre-defined automated reports can be scheduled withing the reporting subsystem.
Reports are associated with one or more timed scans and run on a predefined
schedule. Results from the scans are summarized and presented in an easily



digestible format. Reports can be delivered via email, or viewed via CLI or GUI
output. Reports should be cached for a period of time allowing quick retrieval of past
reports.

Reports should include various statistics relevant to the scanning. The time taken for
the scan, number of hosts and ports identified, new ports found, old ports removed.

Back End design
MySQL Database Definition
Spawner table

id int

server_ip int

subnet int

mask int

nmap_options text

Timing table

id int

scan_time timestamp

spawn_id int


